New HyCARE scientific paper published in the Journal of Alloys and Compounds

HyCARE’s researchers Giovanni Capurso and José M.Bellosta von Colbe of the Helmholtz-Zentrum Hereon (Germany) published their results on thermal activation methods for industrially produced titanium-iron-manganese powders (TiFeMn) for hydrogen storage.

The work proposes an effective thermal activation method with low technical effort for industrially produced titanium-iron-manganese powders (TiFeMn) for hydrogen storage. In this context, the influence of temperature and particle size of TiFeMn on the activation process is systematically studied. The results obtained from this investigation suggest that the activation of the TiFeMn material at temperatures as low as 50 °C is already possible, with a combination of “Dynamic” and “Static” routines, and that an increase to 90 °C strongly reduces the incubation time for activation, i.e. the incubation time of the sample with the two routines at 90 °C is about 0.84 h, while ∼ 277 h is required for the sample treated at 50 °C in both “Dynamic” and “Static” sequences. Selecting TiFeMn particles of larger size also leads to significant improvements in the activation performance of the investigated material. The proposed activation routine makes it possible to overcome the oxide layer existing on the compound surface, which acts as a diffusion barrier for the hydrogen atoms. This activation method induces further cracks and defects in the powder granules, generating new surfaces for hydrogen absorption with greater frequency, and thus leading to faster sorption kinetics in the subsequent absorption-desorption cycles.


The article is available in Open access at this link (until 31 August 2022) and at this link (from 1 September 2022).

International workshop on Hydrides and Energy Storage in tribute to Michel Latroche

Michel Latroche, internationally recognized as a pillar of the hydride community, and more generally of research on the fundamental properties of materials for energy applications, passed away suddenly on December 30, 2021. Michel Latroche was the WP2 leader of the HyCARE project. His work was very important to guide the characterization of powder and pellets produced for the HyCARE system. The international day, which aims to outline the broad panorama of his research interests, is dedicated to his memory. It took place on Monday, June 13 at the ICMPE auditorium in Thiais.

Michel Latroche’s research activities have been mainly devoted to the study of alloys, intermetallic compounds, rare earths and porous materials having the property of reacting with hydrogen to form various compounds with remarkable structural, thermodynamic, physical and electrochemical properties. These hydrogenated materials are attracting ever-increasing interest, both fundamentally and applied. Indeed, they are able to store hydrogen and its isotopes under tuneable pressure and temperature conditions. They are currently used as electrode materials in commercial Ni-MH batteries and are being considered as electrode and electrolyte materials for future generations of Li-ion batteries

During the workshop, HyCARE’s coordinator Marcello Baricco presented the project, highlighting the key contribution of Latroche in the project.

For more information, visit the workshop page.

HyCARE participated to the 2nd Reunion Plenieres de la Fédération (FRH2) du CNRS

HyCARE project coordinator Marcello Baricco participated to the 2nd FRH2 meeting organized by CNRS in Aussois (France). The meeting gathered more than 150 participants with more than a hundred oral presentations by young doctoral students, internationally recognized researchers and industrialists. This unique national event made it possible to take stock of current and future research on hydrogen storage devices, on all types of fuel cells, electrolysers, as well as on associated systems.

Baricco presented the “hydrogen cycle” and stressed the key role of storage to support the uptake of renewable energy sources. The HyCARE storage system was presented as an innovative technology for green hydrogen storage, allowing seasonal storage to support the wider use of renewables.

Download here the programme of the meeting (in French).

Jussara Barale defended her PhD thesis on hydrogen storage based on HyCARE’s R&D

Congratulations to the first HyCARE’s PhD awarded by the chemistry Department of the University of Turin to Dr. Jussara Barale. Under the supervision of Prf. Marcello Baricco, Dr. Barale performed research on hydrogen storage and compression systems based on metal hydride. The work of Dr. Barale was fundamental to understand the properties of metal hydrides in combination to phase changing materials for hydrogen storage.